Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell reports methods ; 2023.
Article in English | EuropePMC | ID: covidwho-2293107

ABSTRACT

The lack of preparedness for detecting and responding to the SARS-CoV-2 pathogen (i.e. COVID-19) has caused enormous harm to public health and the economy. Testing strategies deployed on a population scale at ‘Day Zero', i.e., the time of the first reported case, would be of significant value. Next Generation Sequencing (NGS) has such capabilities;however, it has limited detection sensitivity for low copy number pathogens. Here we leverage the CRISPR-Cas9 system to effectively remove abundant sequences not contributing to pathogen detection and show that NGS detection sensitivity of SARS-CoV-2 approaches that of RT-qPCR. The resulting sequence data can also be used for variant strain typing, co-infection detection, and individual human host response assessment, all in a single molecular and analysis workflow. This NGS workflow is pathogen agnostic and, therefore, has the potential to transform how large-scale pandemic response and focused clinical infectious disease testing are pursued in the future. Graphical Next generation sequencing could provide ‘Day Zero' testing for pandemic preparedness however, abundant uninformative sequences mask the signal from low level pathogens. Chan et al. establish a method using the CRISPR-Cas system to remove uninformative sequences in vitro to achieve sensitivity and specificity of pathogen detection comparable to RT-qPCR.

2.
Front Immunol ; 13: 912898, 2022.
Article in English | MEDLINE | ID: covidwho-1957161

ABSTRACT

Two years into the COVID-19 pandemic there is still a need for vaccines to effectively control the spread of novel SARS-CoV-2 variants and associated cases of severe disease. Here we report a messenger RNA vaccine directly encoding for a nanoparticle displaying 60 receptor binding domains (RBDs) of SARS-CoV-2 that acts as a highly effective antigen. A construct encoding the RBD of the Delta variant elicits robust neutralizing antibody response, and also provides protective immunity against the Delta variant in a widely used transgenic mouse model. We ultimately find that the proposed mRNA RBD nanoparticle-based vaccine provides a flexible platform for rapid development and will likely be of great value in combatting current and future SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , Nanoparticles , mRNA Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Mice , Mice, Inbred BALB C , Mice, Transgenic , Nanoparticles/chemistry , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , mRNA Vaccines/immunology
3.
MEDLINE; 2020.
Non-conventional in English | MEDLINE | ID: grc-750494

ABSTRACT

To identify features in the genome of the SARS-CoV-2 pathogen responsible for the COVID-19 pandemic that may contribute to its viral replication, host pathogenicity, and vulnerabilities, we investigated how and to what extent the SARS-CoV-2 genome sequence differs from other well-characterized human and animal coronavirus genomes. Our analyses suggest the presence of unique sequence signatures in the 3'-untranslated region (UTR) of betacoronavirus lineage B, which phylogenetically encompasses SARS-CoV-2, SARS-CoV, as well as multiple groups of bat and animal coronaviruses. In addition, we identified genome-wide patterns of variation across different SARS-CoV-2 strains that likely reflect the effects of selection. Finally, we provide evidence for a possible host microRNA-mediated interaction between the 3'-UTR and human microRNA hsa-miR-1307-3p based on predicted, yet extensive, complementary base-pairings and similar interactions involving the Influenza A H1N1 virus. This interaction also suggests a possible survival mechanism, whereby a mutation in the SARS-CoV-2 3'-UTR leads to a weakened host immune response. The potential roles of host microRNAs in SARS-CoV-2 replication and infection, and the exploitation of conserved features in the 3'-UTR as therapeutic targets warrant further investigation.

4.
mSphere ; 5(6)2020 11 25.
Article in English | MEDLINE | ID: covidwho-947808

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 40 million people worldwide, with over 1 million deaths as of October 2020 and with multiple efforts in the development and testing of antiviral drugs and vaccines under way. In order to gain insights into SARS-CoV-2 evolution and drug targets, we investigated how and to what extent the SARS-CoV-2 genome sequence differs from those of other well-characterized human and animal coronavirus genomes, as well as how polymorphic SARS-CoV-2 genomes are generally. We ultimately sought to identify features in the SARS-CoV-2 genome that may contribute to its viral replication, host pathogenicity, and vulnerabilities. Our analyses suggest the presence of unique sequence signatures in the 3' untranslated region (3'-UTR) of betacoronavirus lineage B, which phylogenetically encompasses SARS-CoV-2 and SARS-CoV as well as multiple groups of bat and animal coronaviruses. In addition, we identified genome-wide patterns of variation across different SARS-CoV-2 strains that likely reflect the effects of selection. Finally, we provide evidence for a possible host-microRNA-mediated interaction between the 3'-UTR and human microRNA hsa-miR-1307-3p based on the results of multiple computational target prediction analyses and an assessment of similar interactions involving the influenza A H1N1 virus. This interaction also suggests a possible survival mechanism, whereby a mutation in the SARS-CoV-2 3'-UTR leads to a weakened host immune response. The potential roles of host microRNAs in SARS-CoV-2 replication and infection and the exploitation of conserved features in the 3'-UTR as therapeutic targets warrant further investigation.IMPORTANCE The coronavirus disease 2019 (COVID-19) outbreak is having a dramatic global effect on public health and the economy. As of October 2020, SARS-CoV-2 has been detected in over 189 countries, has infected over 40 million people, and is responsible for more than 1 million deaths. The genome of SARS-CoV-2 is small but complex, and its functions and interactions with human host factors are being studied extensively. The significance of our study is that, using extensive SARS-CoV-2 genome analysis techniques, we identified potential interacting human host microRNA targets that share similarity with those of influenza A virus H1N1. Our study results will allow the development of virus-host interaction models that will enhance our understanding of SARS-CoV-2 pathogenesis and motivate the exploitation of both the interacting viral and host factors as therapeutic targets.


Subject(s)
COVID-19 , Host-Pathogen Interactions/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Animals , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Genome, Viral , Humans , Phylogeny
5.
bioRxiv ; 2020 Jul 06.
Article in English | MEDLINE | ID: covidwho-663114

ABSTRACT

To identify features in the genome of the SARS-CoV-2 pathogen responsible for the COVID-19 pandemic that may contribute to its viral replication, host pathogenicity, and vulnerabilities, we investigated how and to what extent the SARS-CoV-2 genome sequence differs from other well-characterized human and animal coronavirus genomes. Our analyses suggest the presence of unique sequence signatures in the 3'-untranslated region (UTR) of betacoronavirus lineage B, which phylogenetically encompasses SARS-CoV-2, SARS-CoV, as well as multiple groups of bat and animal coronaviruses. In addition, we identified genome-wide patterns of variation across different SARS-CoV-2 strains that likely reflect the effects of selection. Finally, we provide evidence for a possible host microRNA-mediated interaction between the 3'-UTR and human microRNA hsa-miR-1307-3p based on predicted, yet extensive, complementary base-pairings and similar interactions involving the Influenza A H1N1 virus. This interaction also suggests a possible survival mechanism, whereby a mutation in the SARS-CoV-2 3'-UTR leads to a weakened host immune response. The potential roles of host microRNAs in SARS-CoV-2 replication and infection, and the exploitation of conserved features in the 3'-UTR as therapeutic targets warrant further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL